Acta Cryst. (1963). 16, 124

The Crystal Structure of Pseudomalachite, $\text{Cu}_5(\text{PO}_4)_2(\text{OH})_4$

BY SUBRATA GEOSE*

Crystallography Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A.

(Received 28 *February* 1962)

Pseudomalachite, $Cu_{5}(PO_{4})_{2}(OH)_{4}$ is monoclinic, space group $P2_{1}/c$, with

 $a_0 = 4.47$, $b_0 = 5.75$, $c_0 = 17.08$ Å; $\beta = 91^{\circ}$ 07'.

The structure has been determined from sharpened Patterson projections on (100) and (010) and refined by Fourier and difference Fourier syntheses. In the structure there are two types of parallel infinite octahedral chains, the first composed of one Cu(OH)₂O₄ and two Cu(OH)₃O₃ octahedra, sharing four and three edges respectively and the second of $Cu(OH)_2O_4$ octahedra sharing opposite square edges. These chains alternate, sharing edges, to form a set of infinite parallel sheets, held together by tetrahedral PO₄ groups.

Introduction

From studies of basic copper compounds it is known that the building block of such structures is usually the distorted copper co-ordination octahedron. In these structures the copper octahedra either occur as discrete units, or more commonly share corners or edges to form different types of chains, sheets or threedimensional networks. The structure of pseudomalachite, $Cu_5(PO_4)_2(OH)_4$ has been determined, in order to gain some knowledge about the structural principles of the basic copper phosphates and arsenates, several of which are known as minerals.

Pseudomalachite is a fairly common secondary mineral, found in the oxidized zone of copper deposits. Berry (1950) determined the space group and cell dimensions; he also summarized and added to the optical, X-ray and chemical data on this mineral from various localities. Guillemin (1956) synthesized this mineral by the action of phosphoric acid on malachite, $Cu₂(OH)₂CO₃$. The specimen used for the present structure determination came from Virneberg, Linz, Germany (U.S.N.M. Cat. no. R5381).

Experimental

Pseudomalachite is monoclinic, crystal class $2/m$. The cell dimensions, determined by Berry (1950) for this specimen from precession photographs about a and b with Mo K_{α} and Cu K_{α} radiation, are:

 $a_0=4.47, b_0=5.75, c_0=17.08 \text{ Å}; \beta=91^{\circ} 07'.$ Space group *P21/c.* $D_{\text{meas.}} \sim 4.3 \text{ g.cm}^{-3} \text{ and } D_{\text{calc.}} = 4.34 \text{ g.cm}^{-3}.$ Two formula units per cell.

The intensities of 0k/, *hO1* and *hll* reflections have been visually estimated from multiple-film Weissen-

berg photographs, taken with $Cu K_{\alpha}$ radiation. The intensities have been corrected for Lorentz and polarization factors, but no absorption corrections have been made. The observed structure factors have been put on an absolute basis in the course of the structure determination. All the calculations have been carried out on the IBM 650 computer, using Shiono's programs (1957, 1959).

Determination of the structure

The structure determination was started with the sharpened Patterson projection on (100) , since a is the shortest axis. The unit cell contains l0 Cu, 4 P, 16 O and 8 (OH) ions. Two of the ten copper atoms must be on a two-fold special position. They were arbitrarily placed at $2(a)$; 0, 0, 0 and 0, $\frac{1}{2}$, $\frac{1}{2}$. The Patterson map, therefore, should contain peaks at locations of atoms in the structure. However, the Patterson map contained many strong peaks of about equal height and the structure was not immediately obvious. From the consideration of the Patterson peaks occuring on $v=\frac{1}{2}$ and $w=\frac{1}{2}$, the other two copper atoms were located at $y=\frac{1}{2}$, $z=0.09$ and $y=$ 0.34, $z=\frac{1}{4}$. The *Okl* structure factors, calculated with the contribution from the copper atoms only, yielded an R factor of 0-45. Successive Fourier and difference Fourier syntheses brought out the phosphorus and

Fig. 1. Electron density projection of pseudomalaehite, $\text{Cu}_5(\text{PO}_4)_2(\text{OH})_4$ on (100). Contour intervals 4 e. \AA^{-2} .

^{*} Present address: Mineralogical Institute, University of **Bern,** Sahlistrasse 6, Bern, Switzerland.

the oxygen atoms. The (100) projection was refined by difference Fourier syntheses till the R factor decreased to 0.12. The final electron-density projection of the structure on (100) is shown in Fig. 1.

A model of the structure was set up next on the basis of the atomic parameters obtained from the (100) projection. The x parameters were estimated from this model, assuming square planar Cu-O (or OH) distances to be 2.00 Å , non-square planar Cu-O distances to be $2.4-2.6$ Å and P-O distances to be 1.54 Å. The x parameters of the copper and the phosphorus atoms were confirmed from a sharpened Patterson projection on (010) . The R factor for the *hO1* structure factors, calculated on the basis of these x parameters, was 0.35. The (010) projection was refined also with difference Fourier syntheses. The R factor for *hO1* reflexions after correcting four strong low-angle reflexions for extinction (Pinnock, Taylor & Lipson, 1956) is 0.15. The R factor for the *hll* retiexions, calculated with the final parameters, is 0.19. For the structure-factor calculations, the following scattering curves were used: Cu and P, Viervoll &

 $\mathfrak{O}\text{grim}$ (1949) and O, Berghuis *et al.* (1955). The scattering curves were modified by the following isotropic temperature factors: 0.50 Å^2 for Cu and O and 0.15 A^2 for P. The observed and calculated *Okl* and *hO1* structure factors are listed in Table 2. Table 1 lists the final atomic parameters.

Description of the structure

The structure of pseudomalachite is composed of linked distorted co-ordination octahedra around $Cu₁$, Cu2 and Cu3 and discrete tetrahedral phosphate groups. Projections of the structure on (100) and (010) are shown in Figs. 2 and 3 respectively. The interatomic distances and angles are listed in Table 3. The estimated standard errors of bond distances are: Cu-O and P-O ± 0.05 Å and O-O ± 0.07 Å.

The phosphate group is quite regular, with an average P-O distance of $1.54₅$ Å. This distance is comparable to the average $P-O$ distance of 1.54 Å in LiMnPOa (Geller & Durand, 1960). The average $O-P-O$ angle is 109.2° and the average $O-O$ distance is $2.52~\mathrm{A}$.

The co-ordination around Cu₁ is $4 + (2)$. Two oxygen and two (OH) ions form a square plane around $Cu₁$ $(Cu_1-(OH)_1 \ 2.02 \ \text{\AA} \ (\times 2) \ \text{and} \ Cu_1-O_1 \ 1.94 \ \text{\AA} \ (\times 2))$ with two further oxygens (Cu₁-O₄ 2.69 Å (\times 2)) completing a distorted octahedron. This is comparable to the dimensions of the $Cu₁$ octahedron in malachite, Cu2(OH)2COa (Wells, 1951), and the Cu octahedron in salesite, $CuIO₃(OH)$ (Ghose, 1962).

The co-ordination around $Cu₂$ is $4+1+(1)$. One oxygen and three (OH) ions form a square array around Cu₂ (Cu₂-(OH)₁ 2.02 Å, Cu₂-(OH)₁ 1.98 Å,

Fig. 2. Projection of the structure of pseudomalachite, $\text{Cu}_5(\text{PO}_4)_2(\text{OH})_4$ on (100).

126 THE CRYSTAL STRUCTURE OF PSEUDOMALACHITE, $\text{Cu}_{5}(\text{PO}_{4})_{2}(\text{OH})_{4}$

Table 2. *Observed and calculated structure factors of pseudomalachite*, $Cu_5(PO_4)_2(OH)_2$

* Corrected for extinction.

Fig. 3. Projection of the structure of pseudomalachite, $Cu_{5}(PO_{4})_{2}(OH)_{4}$ on (010). Coordination of Cu_{3} ' not shown.

Table 3 *(cont.)* Within the $Cu₃$ octahedron

Within the $Cu₂$ octahedron

$O_3' - (OH)_2$	2.97	O_4' -Cu ₃ -O ₃	97
$(OH)2-O3$	$2.60*$	$O_4' - Cu_3 - (OH)_2'$	106
O_2-O_3	3.01	O_4' -Cu ₃ -O ₃ '	91
$O_2 - (OH)_2'$	$2.66*$	O_4' -Cu ₃ -(OH) ₂	82
O_2^- - O_3'	2.92		
$O_2 - (OH)_2$	3.22		
$O_4' - O_3$	3.40		
$O_4'-(OH)_2'$	3.58		
$O_4^{\prime}-O_3^{\prime}$	3.19		à.
$O_4'-(OH)_2$	$2.96*$		
		Copper-copper distances	
$Cu_{1}-Cu_{2}$	3.09	$Cu_{2}-Cu_{3}$	$3.06~\text{\AA}$
$\operatorname{Cu}_{1}^{\scriptscriptstyle\bullet} \!-\!\operatorname{Cu}_{2}^{\scriptscriptstyle\bullet\hspace{-1pt}\prime\hspace{-1pt}\prime}$	3.37	$Cu2-Cu3'$	3.40
$\mathrm{Cu}_{2}^{\text{--}}\mathrm{Cu}_{2}^{\text{--}\prime\prime}$	2.95	Cu_{3}^- - Cu_{3}^-	2.89
		$C_{u_3}-Cu_2$	3.39
		Copper-phosphorus distances	×

 $Cu₁-P$ 3.24, 3.28 Å
 $Cu₂-P$ 3.13, 3.34 $\begin{array}{ccc}\n\text{Cu}_2-\text{P} & 3.13, 3.34 \\
\text{Cu}_3-\text{P} & 3.21, 3.47\n\end{array}$ $3.21, 3.47$

* Shared edges.

 $Cu_{2}-(OH)_{2}^{\prime}$ 1.99 Å and $Cu_{2}-O_{2}$ 1.91 Å). The fifth oxygen, O_1 is at a distance of 2.39 Å, while the sixth one O_4' is at a distance of 2.70 Å. This type of coordination around copper has been found in azurite, $Cu_3(OH)_2(CO_3)_2$ (Gattow & Zemann, 1958), chalcomenite, $CuSeO₃$. $2 H₂O$ (Gattow, 1958) and $Cu(NH₃)₄SO₄$. $H₂O$ (Simerská, 1954; Mazzi, 1955).

Cu₃ has a $4+2$ co-ordination; it is bonded to two oxygen and two (OH) ions in a square plane ($Cu₃-O₃$ 2.00 Å, $Cu_{3}-O_{3}$ 1.94 Å, $Cu_{3}-(OH)_{2}$ 1.95 Å and Cu_{3} –(OH)^{$\text{/}}$} 1.96 Å). Two more oxygens (Cu₃–O₂ 2.36 Å and Cu₃-O₄ 2.51 Å) complete the distorted octahedron. In both Cu₁ and Cu₃ octahedra, the (OH) ions in the square planar co-ordination occur diagonally opposite to each other.

The $Cu₁$ octahedron shares four edges with four neighboring Cu₂ octahedra, while each Cu₂ octahedron shares two edges with two adjacent Cu₁ octahedra, one edge with an adjacent Cu2 octahedron and two edges with two adjacent Cu₃ octahedra. Thus, one $Cu₁$ and two $Cu₂$ octahedra, each kind sharing four and three edges alternately, form an infinite chain parallel to b, which is very similar to the chain found in lindgrenite, $Cu_3(M_0O_4)_2(OH)_2$ (Calvert & Barnes, 1957). On the other hand, the Cu₃ octahedron shares opposite square edges with two adjacent Cu₃ octahedra to form a second type of octahedral chain, parallel to b. Furthermore, as mentioned earlier, each Cu₃ octahedron shares two edges with two adjacent $Cu₂ octahedra.$ In this way, these two different types of copper octahedral chains are joined alternately to form a sheet parallel to *bc.*

The phosphorus ions in tetrahedral co-ordination bind these adjacent parallel sheets together in a three-dimensional network. Each oxygen ion, in addition to being bonded to phosphorus, is bonded also to two copper atoms, except \tilde{O}_4 , which is bonded to three.

The type of sheet structure found in pseudomalachite is quite different from that found in a number of basic copper compounds, namely, $Cu_2(OH)_3Br$ (Aebi, 1948; Oswald *et al.*, 1961), Cu₂(OH)₃Cl, botallackite (Embrey, 1957; Voronova & Vainshtein, 1958), Cu₂(OH)₃I (Oswald *et al.*, 1961), Cu₂(OH)₃NO₃ (Nowacki & Scheidegger, 1952), and $Cu₄(OH)₆SO₄$, brochantite (Cocco & Mazzi, 1959). In the above-named compounds, the sheet structure is formed by two types of copper octahedral chain sharing corners; the first type of chain is formed by the octahedra sharing the opposite square edges and is similar to the second type of chain found in pseudomalachite and to the copper octahedral chain found in Cu(OH)₂ (Jaggi & Oswald, 1961) and linarite, PbCu(OH)₂SO₄ (Bachmann & Zemann, 1961); the second type of chain is formed by the octahedra sharing opposite bipyramidal edges and is similar to the chain found in salesite, $CuIO₃(OH)$ (Ghose, 1962). A corrugated shect structurc, similar to that found in lepidocrocite, Fe00H, has been found in $Cu(OH)₂$ (Jaggi & Oswald, 1961) and a slightly wave sheet structure in CuOHC1 (Iitaka *et al.,* 1961).

In pseudomalachite, each (OH) ion is bonded to three copper atoms at the corners of a triangle; this triangle forms the base of a trigonal pyramid, in which the (OH) ion occupies the apex. The proton in the (OH) ion must occur away from the plane of the copper atoms and is possibly not involved in any hydrogen bonds.

The extra water reported in chemical analyses of pseudomalachite from various localities varies from none to about four molecules per unit cell. According to Berry (1950), this water is not a part of the structure. In the present structure analysis, no definite indication of the presence of water molecules in the structure has been found. If these water molecules are really a part of the structure, they must be zeolitic in nature and possibly occur in channels parallel to b , between rows of phosphate groups.

Prof. L. G. Berry, Queen's University, Canada and Mr Paul E. Desautels, U.S. National Museum, Washington, D.C. kindly provided mineral specimens. The author is indebted to Prof. George A. Jeffrey for laboratory and computation facilities, and to Mrs Pauline K. Persing Ghose for technical assistance and the diagrams. The computations involved in this work were supported from grant no. G 7395 of the National Science Foundation.

References

- AEBI, F. (1948). *Helv. Chim. Acta,* 31, 369.
- BACHMANN, H. G. & ZEMANN, J. (1961). *Acta Cryst.* 14, 747.
- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LooP-STRA, B.O., MACGILLAVRY, C.H. & VEENENDAAL, A.L. (1955). *Acta Cryst.* 8, 478.
- BERRY, L. G. (1950). *Amer. Min.* 35, 365.
- CALVERT, L. D. & BARNES, W. H. (1957). *Canad. Min.* 6, 31.
- Cocco, G. & MAzzI, F. (1958). *Period. di Mineral. 28,* 121.
- EMBREY, P. G. (1957). *Brit. J. Appl. Phys.* 8, 433.
- GATTOW, G. (1958). *Acta Cryst.* 11, 377.
- GATTOW, G. & ZEMANN, J. (1958). *Acta Cryst.* 11, 866. GELLER, S. & DU-RAND, J. L. (1960). *Acta Cryst.* 13, 325.
-
- GHOSE, S. (1962). *Acta Cryst.* 15, 1105.
- OUILLEMIN, C. (1956). *Bull. Soc. franp. Mindr. Crist.* 79, 219.
- IITAKA, Y., LOCCHI, S. & OSWALD, H. R. (1961). *Helv. Chim. Acta,* 44, 2095.
- JA¢oI, H. & OSWALD, H. R. (1961). *Acta Cryst.* 14, 1041. MAzzI, F. (1955). *Acta Cryst.* 8, 137.
- NOWACKI, W. & SCHEIDEGGER, R. (1952). *Helv. Chim. Acta,* 35, 375.
- OSWALD, H. R., IITAKA, Y., LOCCHI, S. & LUDI, A. (1961). *Helv. Chim. Acta,* 44, 2103.
- PINNOCK, P. R., TAYLOR, C. A. & LIPSON, H. (1956). *Acta Crypt. 9, 173.*
- SHIONO, R. (1957). Report no. 2. Also IBM 650 Program Library File no. 84001. University of Pittsburgh Computation and Data processing Center.
- SHIONO, R. (1959). Report no. 9. IBM 650 Program Library File no. 84002. University of Pittsburgh Computation and Data processing Center.
- SIMERSKi, M. (1954). *Czech. J. Phys.* 4, 277.
- VIERVOLL, H. & OGRI•, 0. (1949). *Acta Cryst.* 2, 277. VORONOVA, A. A. & VAINSHTEIN, B. K. (1958). *Kristallo-*
- *grafiya,* 3, 444.
- WELLS, A. F. (1951). *Acta Cryst.* 4, 200.